Single-molecule localization microscopy: Data analysis

EMBL Advanced Course: Super-Resolution Microscopy

20 - 25 Jul 2015

Franziska Fricke & Mike Heilemann

Single-Molecule Biophysics Goethe-University of Frankfurt

Single-molecule localization microscopy

Fit Model: 2D Gaussian function

$$I(x,y) = I_0 + \frac{N}{2\pi\sigma_x\sigma_y} exp\left(-\left(\frac{x-x_c}{\sqrt{2}\sigma_x}\right)^2 - \left(\frac{y-y_c}{\sqrt{2}\sigma_y}\right)^2\right)$$

Reconstructing the image

x [nm]	y [nm]	t [ms]	I [Photons]
12.148	8.876	0	2846
68.475	97.829	20	1861
23.073	58.721	20	1770
84.058	63.144	40	1023
200.702	28.336	40	1136
315.832	105.179	40	944
35.063	11.776	60	978

Software

RapidStorm

Analyzing blinking movies (.tif)

Output: Image and localization table

localization table

x [nm]	y [nm]	t [ms]	I [Photons]
12.148	8.876	0	2846
68.475	97.829	20	1861
23.073	58.721	20	1770
84.058	63.144	40	1023
200.702	28.336	40	1136
315.832	105.179	40	944
35.063	11.776	60	978

Fiji

Quantitative analysis of *image*

- Resolution estimation
- Image-based cluster analysis

Lama

Quantitative analysis of **localization table**

- Localization precision
- Coordinate-based cluster analysis

• ...

• ...

RapidStorm localization routine

Gaussian function

1D Gaussian:

$$I(x) = \frac{N}{\sqrt{2\pi}\sigma} e^{-\left(\frac{x-x_c}{\sqrt{2}\sigma}\right)^2}$$

Normal distribution = normalized Gaussian
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\left(\frac{x-x_c}{\sqrt{2}\sigma}\right)^2} dx = 1 \quad \rightarrow \quad \int_{-\infty}^{\infty} I(x) dx = N$$

- N = number of photons
- σ = standard deviation

 x_c = fluorophore position

Full Width at Half Maximum:

$$FWHM = 2\sqrt{2ln2}\sigma \cong 2.35\sigma$$

Localization Precision

How good can we determine the position of a fluorophore?

Error Δx *in position* x_c

• 1 photon: $\Delta x = SEM = \sigma$

SEM = Standard Error of the Mean

• *N* photons:
$$\Delta x = SEM = \frac{\sigma}{\sqrt{N}}$$

(*N* photons equivalent to *N* position measurements)

R. Thompson et al. Biophys J 82, 2775-83 (2002)

Localization Precision

How good can we determine the position of a fluorophore?

Further errors are introduced by pixelation noise and background:

$$\frac{\text{Mortensen:}}{\Delta x = \sqrt{\frac{\sigma^2 + a^2/12}{N} \left(\frac{16}{9} + \frac{8\pi(\sigma^2 + a^2/12)b^2}{a^2N}\right)}} \qquad a = \text{pixel size}$$

$$b = \text{background noise}$$

Typical values for error Δx *:*

Alexa Fluor 647

 $\sigma = 150 \text{ nm}$ (FWHM $\cong \lambda/2 \cong 350 \text{ nm}$) N = 1000 photons; a = 160 nm; b = 5 photons $\Delta x_{Mortensen} = 7.7 \text{ nm}$

K. Mortensen et al. Nat Meth 7, 377-81 (2010)

Blinking of fluorophores

Grouping of emissions that last for multiple frames

Important parameters:

- grouping radius (e.g. multiples of localization precision Δx)
- Grouping time: number of allowed "dark frames" for fluorophore

D. Lando et al. Open Biol (2012)

Experimental Localization Precision

Image resolution = FWHM of a microtubule?

U. Endesfelder et al. *Nat Meth* **11**, 235-8 (2014); U. Endesfelder et al. *Histochem Cell Biol* **141**, 629-38 (2014); J. Vaughan et al. *Nat Meth* **9**, 1181-4 (2012)

Morphological cluster analysis

Analyzing protein accumulations

- Density: clusters per area
- cluster size
- localizations per cluster
- ...

Experimental Localization Precision

How good can we determine the position of a fluorophore?

Analysis based on nearest neighbor localizations in adjacent frames

• Determine nearest neighbor distance distribution in adjacent frames

U. Endesfelder et al. Histochem Cell Biol 141, 629-38 (2014)

How can we distinguish spatial inhomogeneity?

Ripley's K, L and H functions: Compare point pattern with uniform point distribution

- N = number of localizations in ROI
- A = size of ROI
- p_i = localization i (here: red point)
- N_{p_i} = number of locs. around p_i within distance $d \leq r$

Ripley's K function:
$$K(r) = \frac{A}{N^2} \sum_{i=1}^{N} N_{p_i} (d \le r)$$

B. D. Ripley, J Appl Probability 13, 255-66 (1976)

How can we distinguish spatial inhomogeneity?

Dist [nm]

S. Malkusch et al. Histochem Cell Biol 139, 173-9 (2013)

Domain size

Torroidal edge correction

Alternatives: buffer zones, weighted correction

Example: Distributions of Gag proteins at the plasma membrane

S. Malkusch et al. Histochem Cell Biol 139, 173-9 (2013)

DBSCAN cluster analysis

In this diagram, minPts = 3. Point A and the other red points are core points, because at least three points surround it in an ε radius. Because they are all reachable from one another, they form a single cluster. Points B and C are not core points, but are reachable from A (via other core points) and thus belong to the cluster as well. Point N is a noise point that is neither a core point nor density-reachable.

Pair-correlation function

Comparison of Ripley's and the pair-correlation function

- N = number of localizations in ROI
- A = size of ROI
- p_i = localization i (here: red point)

 N_{p_i} = number of locs. around p_i within distance $r_{min} < d \leq r_{max}$

Pair-correlation function
$$g(r) = \frac{A}{4\pi r^2 N^2} \sum_{i=1}^{N} N_{p_i} (r_{min} < d \le r_{max})$$

Pair-correlation function

Immobilized fluorophores: complete spatial randomness?

P. Sengupta et al. Nat Meth 8, 969-75 (2011)

Pair-correlation function

Example: transferrin receptor labeled with PAGFP

Inhomogeneous protein distribution

Cluster radius $\xi = 160 \text{ nm}$

Proteins per cluster $N \approx 2A\pi\xi^2 \rho = 13$

Increase of protein density in clusters $\Psi \approx 2A = 3$

$$g(r) = g_{PSF}(r) \cdot \frac{1}{\rho} + g(r)^{protein} + \mathbf{1} = \frac{1}{4\pi\rho\sigma^2} \exp\left(-\frac{r^2}{4\sigma^2}\right) + A \exp\left(-\frac{r}{\xi}\right) + \mathbf{1}$$

P. Sengupta et al. Nat Methods 8, 969-75 (2011); P. Sengupta et al. Chem Rev 114, 3189-3202 (2014)

Drift Correction

Drift correction with fiducial markers

P. Zessin, Optical Nanoscopy 2, 1-8 (2013)

Dual-color images

Affine transformation

Color-channel alignment

Example: multi-color fluorescent beads in red and green channel

Affine transformation: translation, rotation, scaling, shearing

- corrects for chromatic aberration (lenses, mirrors), setup instability (filter change) ...
- Here: mean bead displacement error = 7.8 nm

S. Malkusch et al. Histochem Cell Biol 137, 1-10 (2012)

Color-channel alignment

Error of channel-alignment using Tetraspecks

9 fiducial markers are sufficcient to decrease the rms error to ~ 10 nm!

$$\operatorname{rms}(\beta, X, Y) = \sqrt{\frac{1}{N - \operatorname{dof}} \sum_{i=1}^{N} ||x_i - \beta y_i||^2}$$

rms: root-mean-square error

J. Schleicher, Diploma thesis (2011)

Pearson's correlation coefficient

Describes the degree of overlap between two images

$$r_p = \frac{(4 - 1.75)(3 - 2) + (1 - 1.75)(0 - 2) + (0 - 1.75)(1 - 2) + (2 - 1.75)(4 - 2)}{\sqrt{\left[(4 - 1.75)^2 + (1 - 1.75)^2 + (0 - 1.75)^2 + (2 - 1.75)^2\right] \cdot \left[(3 - 2)^2 + (0 - 2)^2 + (1 - 2)^2 + (4 - 2)^2\right]}} = 0.64$$

Characteristics of Pearson's coefficient:

- Decides whether patterns correlate in a *linear way*
- not sensitive to the intensity of background or overlapping pixels

Pearson's correlation coefficient

Manders' overlap coefficient

Describes the degree of overlap between two images

Characteristics of Manders' overlap coefficient :

- proportional to the number of colocalizing objects (R_i > 0 and G_i > 0)
- Not sensitive to differences in signal intensities
- Ambiguous: number of colocalizing objects have strong influence
- Range: 1 → 0
 perfect correlation → no correlation

Manders' coefficients

Describes the degree of overlap between two images

Characteristics of Manders' coefficients :

- equals the number of colocalizing objects/channel (e.g. 86% of red objects colocalize)
- dependent on the signal intensity (background!)
- Not sensitive to differences in signal intensities
- Range: 1 → 0
 perfect correlation → no correlation

Costes' method

Setting a background threshold for Manders' coefficients

1. Test colocalization (95% confidence level)

Costes' randomization: test colocalization via Pearson's by comparing with a number of trials, where pixels are "scrambled" in one channel

2. Scatter plot

Create a scatter plot of pixel intensities \rightarrow make linear fit

3. Find threshold for both channels

Find specific point on line, where Pearson's coefficient = 0 for all pixels with values below point \rightarrow threshold

Intensity scatter plot

Coordinate-based Colocalization (CBC)

Colocalization of single-molecules

Distribution function of neighboring localizations: $D_{A_{i},A}(r) = \frac{N_{A_{i},A}(r)}{\pi r^{2}} \cdot \frac{\pi R_{\max}^{2}}{N_{A_{i},A}(R_{\max})} = \frac{N_{A_{i},A}(r)}{N_{A_{i},A}(R_{\max})} \cdot \frac{R_{\max}^{2}}{r^{2}}$ $D_{A_{i},B}(r) = \frac{N_{A_{i},B}(r)}{N_{A_{i},B}(R_{\max})} \cdot \frac{R_{\max}^{2}}{r^{2}}$

Spearman's rank correlation coefficient from distributions

$$S_{A_{i}} = \frac{\sum_{r_{j}=0}^{R_{\max}} \left(O_{D_{A_{i},A}}(r_{j}) - \bar{O}_{D_{A_{i},A}} \right) \left(O_{D_{A_{i},B}}(r_{j}) - \bar{O}_{D_{A_{i},B}} \right)}{\sqrt{\sum_{r_{j}=0}^{R_{\max}} \left(O_{D_{A_{i},A}}(r_{j}) - \bar{O}_{D_{A_{i},A}} \right)^{2}} \sqrt{\sum_{r_{j}=0}^{R_{\max}} \left(O_{D_{A_{i},B}}(r_{j}) - \bar{O}_{D_{A_{i},B}} \right)^{2}}}$$

Colocalization value of ith localization of species A/B:

$$CBC_{A_i} = S_{A_i} \exp\left(-\alpha \frac{NN_{A_i,B}}{R_{max}}\right)$$
 $CBC_{B_i} = S_{B_i} \exp\left(-\alpha \frac{NN_{B_i,A}}{R_{max}}\right)$

S. Malkusch et al. Histochem Cell Biol 137, 1-10 (2012)

Coordinate-based Colocalization (CBC)

Colocalization of single-molecules

Characteristics of CBC:

- Colocalization value is assigned to every localization
- Pixel values are averages of colocalization values of single localizations

Image-based Colocalization

Example: cis- (GM130) and trans- (GalT) Golgi membrane proteins

B. Flottmann, PhD Thesis (2014)

Coordinate-based Colocalization

Example: cis- (GM130) and trans- (GalT) Golgi membrane proteins

