M-ROE-PCR synthetic promoters for research, gene therapy & plant biotech

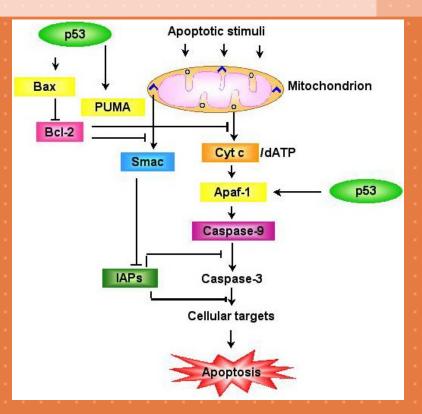
Heidelberg iGEM team 2009

			ΝЛ	
	' V		. V I	
	-	•		-
0	V			

I. The Method II. Patentability

										-	
Overview											
I. The Method											
I. The Method											
i. Rationale											
ii. How it works											
iii.Results											
II. Patentability											
·····											

Method - Rationale


 Natural eukaryotic promoters sense wide variety of conditions

 Synthetic promoters can be constructed to sense specific conditions

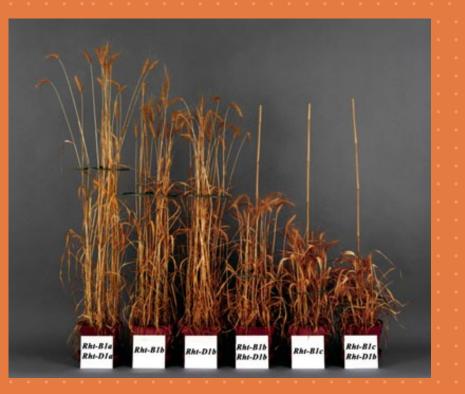
Examples to demonstrate value of synthetic promoters

Method – Application examples

- Transcription-based assays
- Measuring pathway activity
- No standard method for assay construction exists

Method – Application examples

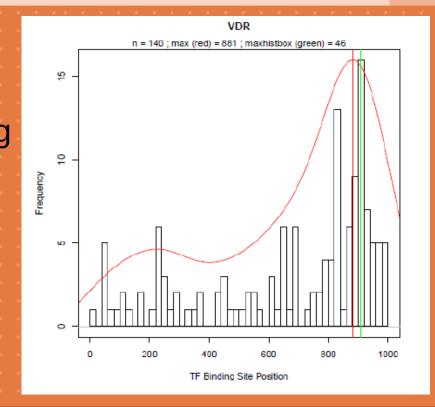
Virotherpay


 Synthetic promoter could be constructed to sense elevated estrogen receptor levels + radiation
 Only radiated cancer cells affected

(c)Copyright 2001 cCureNe.com / All rights reserved.

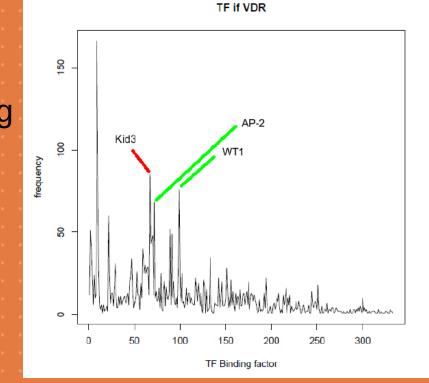
Method – Application examples

- Plant biotechnology
 Always in need for new promoters
- e.g. promoters active only during shoot development, fruit ripening or post harvest


We claim to have invented a standard method for the construction of *any* synthetic promoter:

Model-guided Random Overlap Extension PCR

A PCR-based, bioinformatics guided promoter production pipeline


1) The model

 Genome-wide analysis of Transcription Factor Binding Sites localization and coincidence

1) The model

 Genome-wide analysis of Transcription Factor Binding Sites localization and coincidence

Method – how it works 2) Promoter synthesis 5' Cutsite 5'3' Overlap A PCR based on "Overlap-**Extension PCR**" 3'5' Overlap A 3' Cutsite 5'3' Overlap B 5'3' Overlap A **TFBS** 3'5' Overlap B 3'5' Overlap A **TFBS Coinceding TFBS** Random **General Activator**

	Neth	lod ·	– ho	w it v	work	Ś			
	Cutsite	TFBS S8±L	TFBS S8JL	TFBS ພວກເຊິ່ງ	TFBS S8±L	3' Cutsite 3' Cntsite			
	Cutsite isin0 '2	TFBS S8∃⊥	Other TF JL JəqiO	TFBS ພວກນະປັ	TFBS S8J1	TFBS ພວກທຣິກ	Random wopueg	3' Cutsite 3' Cntsite	
	Cutsite sin C. Crts	3' Cutsite 3' Cntsite							
· · · · · ·									· · · · ·

2) Promoter synthesis

- Oligo concentration regulates promoter length, TFBS numer and ratios
- Clone 5' of a core promoter
- If the model shows a decisive peak, compatible cutters can be used to place TFBS further away from the core promoter or in a certain order – or a sequence can be ordered / synthesized directly

3) Screening

- Pick colonies each colony represents a unique promoter!
- Transfect in 96 well plates under desired conditions, variours control conditions
- Screen by automated methods (e.g. Plate reader)

	_										
N/c	sthe	- bd	Dr		to						
		Ju –	RC	:5U	15						
						· · · · · ·					
		· · · · · · ·				<u>.</u>					
		· · · · · ·				· · · · · ·	· · · · ·				
	· · · · ·	 					0	· · · · ·	10	· · · · ·	
1	1125,2	1224,3	2	1102.6	1352,3	3	1047,8	1229,9	4	1076,7	1
5	974,56	1045,8	6	1102,6 1224,3	1352,3 1255,9	7	1,085,6	1159,7	4 8	1440,8	1
5 9	2 1125,2 974 56 1690 1299 2	1224,3 1045 8 1454,9 1368 2	6 10	1102,6 1224,3 1174,1 1225, 8	1352,3 1255,9 1138,7 1219	7 11	1047,8 1085,6 1111,1 1306,6	1229,9 1159,7 1563,4 1299,2	4 8 12	1440,8 1017,7	1
5	974,56	1045,8	6	1102,6 1224,3 1174,1 1286,8 1209,3	1352,3 1255,9 1138,7 1219 1230,4	7 11 15 19	1,085,6	1159,7	4 8	1440,8	1
5 9 13 17 21	974,56	1045,8	6 10 14 18 22	1224,3 1174,1 1286,8	1352,3 1255,9 1138,7 1219 1230,4 1629	7 11 15 19 23	1,085,6	1159,7	4 8 12 16 20 24	1440,8 1017,7 1069,2 1147,3 1193,1	1
5 9 13 17 21 25	974,56 1690 1299,2 1232,2	1045.8 1454,9 1368.2 1287.3	6 10 14 18 22 26	1224,3 1174,1 1286,8	1352,3 1255,9 1138,7 1219 1230,4 1629 1201,8	7 11 15 19 23 27	1085.6 1111,1 1306.6 1272,2 1412.4 1181	11597 1563,4 12992 13313 13892 11782	4 8 12 16 20 24 28	1440.8 1017,7 1069,2 1147.3 1193.1 1090	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 9 13 17 21	974.56 1690 1299.2 1232.2 1274,6	1045 8 1454,9 1368 2 1287 3 1419	6 10 14 18 22	1224,3 1174,1 1286,8	1352,3 1255,9 1138,7 1219 1230,4 1629 1201,6 1191,9 1010,2 Je	7 11 15 19 23 27 31	1,085,6	1159,7 1563,4 1299,2 1331,3	4 8 12 16 20 24	1440,8 1017,7 1069,2 1147,3 1193,1	1

Out of 34 putative NfkB responsive clones, 12 are upregulated by NfkB (between 10 and 100%) and 1 is downregulted.

Method - Results

CONST

Const L1

Const L 4

ACTAG TGGGTGACGGGTTCAGCTGTGCGTGGGCGATCGGCAGAT GATCGGCAGAT GATCGGCAGAT GGGTGACGGCAGAT GGGTGACGGCAGATCGGCAGATCATGACTCAGGGTGACGGGTTCACGGCAGATCGGCAGATCAGGGTGACGGGTGACGGGTT CAGTTGGGACCATGCGGCAGATCATGACTCAGGGTGACGGGTTCACTAAGCTT

const L 5

ACTAG TGGGTGACGGGTTCAGG TCCACACACGCGATCGGCAGATCACTIALIGACGICAGGGTGACGGGTTCACTAAGCTT

const S 5

ACTAG TGGGTGACGGGTTCATATTG TTAAAG GCGATCGGCAGATCAGGGGG TCCCCCGGGtGACGGGTTCACTTAG TCAGGTGCGA TCGGCAGATCATGACTCAGGGTGACGGGTTCACTAAGCTT

const S 10

const S 4

ACTAgiGGGTGACGGGTTCATTTGACAAGATGCGATCGGCAGATAAUTUUT HAAUTUAGGGTGACGGGTTCACATACACACAGGCGA TCGGCAGATAAGGGGAACCCCC GGGTGACGGGTTCACAACCAGGGATGCGATCGGCAGAT CACTAAGCTT

p1 Nike CREB Random empty Sp1

We created 10 constitutive expression vectors of different strength (measurement TBD, between 0.8 and 0.1* CMV)

Patentability

I. The Method II. Patentability i. Technizität ii. Novelty iii.Inventive Step iv.Industrial apptication

Patentability - Technizität

- Technische Lehre/Technizität: Technisch ist eine Lehre zum planmäßigen Handeln unter Einsatz beherrschbarer Naturkräfte zur Erreichung eines kausal übersehbaren Erfolgs. (BGH: Rote Taube 1969)
- M-ROE-PCR is a man made method, it does not copy from nature and is therefore technical

Patentability – Novelty, prior art

Closest prior art:

- Ogawa in Biotechniques 42, 628-632: "Random cis-acting element elongation"
- Random Ligation of transcription factor binding sites (ds-DNA)
 - Venter in Trends in Plant Science 12, 118-24: "Synthetic promoters: genetic control through cis-motif engineering"
- Computer models of synthetic promoters
- Other similar research efforts:
 - By "rational design" (creating response elements repeats etc) \rightarrow no scale-up capability
 - Prior Art: Tornoe in Gene 297, 21-32; Kotarsky in Analytical Biochemistry 288, 209 –215; industry: panomics, Luciferase Reporter Vectors (and others)
 - By randomization of spacer sequences, removing response elements etc
 - Prior Art: Tornoe in Gene 297, 21-32; Edelman in PNAS 97, 3038-3043; Ellis in Nature Biotechnology (online, 19.4.2009)

Patentability – Inventive step

- We are the first to combine prediction with screening to get a many functional clones from one experiment
- We did more than just combining the two papers shown:
 - Our method is cheaper and faster, requires only reagents and machinery existing in every lab
 - Our method allows for more randomization (e.g. if badly described TFs are investigated)

Patentability – Industrial application

Compare examples above