Mathematical modeling of the lambda switch

Phage

 $A_r(c) = number of CL(Cro)$ molecules made per transcript $a_r(c) = transcription rates$ $d_r(c) = degradation rate of CL(Cro)$

Rule 1. If $(r \text{ is medium}_r)$ and $(c \text{ is } low_c)$ then $a_r = a_1$.

Rule 2. If (*r* is low_{*r*}) and (*c* is low_{*c*}) then $a_r = a_2$.

Rule 3. If $(r \text{ is } high_r)$ or $(c \text{ is } high_c)$ then $a_r = 0$.

$$\dot{r} = A_r (rcp_1^{ij} + rp_2^{ij} + cp_3^{ij} + p_4^{ij}) - rd_r, \dot{c} = A_c (rcp_5^{ij} + rp_6^{ij} + cp_7^{ij} + p_8^{ij}) - cd_c.$$

- Transcription rate is modeled according to FL rules
- Rates for r and c become a piecewisequadratic second-order DE

System is sensitive to degradation rate

VDR signaling

Figure 21 10: 25(OH) D -mediated transcriptional regulation. Classical action of 10: 25(OH) D is mediated by

Transcriptional activation

- VitaminD receptor-interacting protein attracts VDR-RXR-NCoA62-SKIP-DRIP205
- CDKN1A, SPP1, CYP24A1 are transcribed

Transcriptional repression

- VDR-RXR interact with VDIR
- Repression of CYP27B1, PTH (encodes parathyroid hormone)

Non-genomic signaling

 Activation MAPK – ERK ½ pathway through phosphorylation of PKC/ Ca2+ influx through SOC channels

SREBP signaling

- SREBP is cleaved when sterol is absent dimerized SREBP is imported into the nucleus with importin- β
- SREBP binds also to Vitamin-D receptor-interacting protein